Lompat ke konten Lompat ke sidebar Lompat ke footer

Aturan Dasar Integral Fungsi Aljabar

Integral sanggup dipandang sebagai balikan (invers) dari turunan, sehingga integral sering disebut juga sebagai anti turunan.
Sehingga notasi integral ditulis
 ʃ f(x) dx  = F(x) + c jikalau dan hanya jikalau F’(x) = f(x)

Sebagi contoh:
Jika f(x) = x2 + 6x – 5 maka f ’(x) = 2x + 6
Jika f(x) = x2 + 6x + 10 maka f ’(x) = 2x + 6
Jika f(x) = x2 + 6x – 1/3 maka f ’(x) = 2x + 6
Dari sini diperoleh  ʃ  2x + 6 dx = x2 + 6x + C. Konstanta C dianggap mewakili –5, 10, –1/3 dan semua bilangan real yang lainnya.

Dengan berpedoman dari uraian di atas, maka kita sanggup memilih rumus dasar dari pengintegralan, yakni :
Jika y = ax maka y’ = a, untuk a bilangan real.
Jika y' =axn maka y’ = n.axn-1, untuk a dan n bilangan real

Sehingga diperoleh rumusan : jikalau a dan n ialah bilangan real dengan n ≠ -1, maka :

Untuk pemahaman lebih lanjut, akan diuraikan pada contoh-contoh soal berikut ini :

01. Selesaikanlah integral berikut ini :

 

02. Selesaikanlah integral berikut ini: