Lompat ke konten Lompat ke sidebar Lompat ke footer

Operasi Penjumlahan, Pengurangan Dan Perkalian Pada Polinom

Operasi aljabar pada polinom mencakup penjumlahan, pengurangan, perkalian dan pembagian. Namun sebab operasi pembagian polinom memerlukan kajian yang lebih mendalam, maka pembagian akan diuraikan pada kepingan tersendiri sesudah ini.

Operasi penjumlahan dan pengurangan polinom dilakukan dengan cara menjumlah/mengurang koefisien suku-suku yang memiliki variabel dengan pangkat yang sama. Sedangkan operasi perkalian suku banyak dilakukan dengan cara mengalikan semua suku-suku secara bergantian.

Untuk lebih jelasnya, ikutilah pola soal berikut ini :
01. Diketahui fungsi polinom f(x) = 2x – 4 dan g(x) = 3x2 + 5x – 6 .
Tentukanlah hasil dari
(a) f(x) + g(x)
(b) f2(x) – g(x)
Jawab
(a) f(x) + g(x) = (2x – 4) + (3x2 + 5x – 6)
= 2x – 4 + 3x2 + 5x – 6
= 3x2 + 2x + 5x – 4 – 6
= 3x2 + 7x – 10

(b) f2(x) – g(x) = (2x – 4)2 – (3x2 + 5x – 6)
= (4x2 – 16x + 16) – (3x2 + 5x – 6)
= 4x2 – 16x + 16 – 3x2 – 5x + 6
= 3x2 – 3x2 – 16x –5x + 16 + 6
= x2 – 21x + 22

02. Tentukanlah bentuk sederhana dari (3x – 2)(2x + 5)2
Jawab
(3x – 2)(2x + 5)2 = (3x – 2)(4x2 + 20x + 25)
= (3x)(4x2) + (3x)(20x) + (3x)(25) – (2)(4x2) – (2)(20x) – (2)(25)
= 12x3 + 60x2 + 75x – 8x2 – 40x – 50
= 12x3 + 52x2 + 35x – 50

03. Tentukanlah bentuk sederhana dari (x – 3)2(x + 1) – (x – 3)(x2 – 3x + 2)
Jawab
(x – 3)2(x + 1) – (x – 3)(x2 – 3x + 2)
= (x2 – 6x + 9)(x + 1) – (x – 3)(x2 – 3x + 2)
= [x3 + x2 – 6x2 – 6x + 9x + 9] – [x3 – 3x2 + 2x – 3x2 +9x – 6]
= [x3 – 5x2 + 3x + 9] – [x3 – 6x2 + 11x – 6]
= x3 – 5x2 + 3x + 9 – x3 + 6x2 – 11x + 6
= x2 – 8x + 15